The mushroom bodies of Drosophila melanogaster: an immunocytological and golgi study of Kenyon cell organization in the calyces and lobes.
نویسندگان
چکیده
Golgi impregnations reveal a variety of dendritic morphologies amongst Kenyon cells in the mushroom bodies of Drosophila melanogaster. Different morphological types of Kenyon cells contribute axon-like processes to five divisions of the medial and vertical lobes. Four of these divisions have characteristic affinities to antibodies raised against aspartate, glutamate, and taurine. A newly described posterior subdivision of the medial lobe, here named the betac lobe with its vertical branch alphac, comprises glutamatergic Kenyon cells that are probably homologous to glutamatergic Kenyon cells in the cockroach and honey bee, and are the last neurons to differentiate. The first neurons to differentiate, which supply the gamma lobe, are equipped with clawed dendritic specializations and are the structural homologues of clawed class II Kenyon cells supplying the gamma lobes in cockroaches and honey bees. Three intermediate divisions lie between the betac lobe and gamma lobe. These are, from the back towards the front, the beta lobe, the beta' lobe, and a narrow division between beta' and gamma called the beta" lobe. The fused calyx of the Drosophila mushroom body is comparable to the double calyces of Hymenoptera, here exemplified by a basal taxon, Diprion pini. Further similarities between the hymenopteran calyces and those of Drosophila are suggested by the segregation of different types of Kenyon cell dendrites within the calyx neuropil. The organization of afferents from the antennal lobes also defines regions in the Drosophila calyx that may be homologous to the lip and basal ring regions of the honey bee calyces. As in honey bees, GABAergic processes densely invade Drosophila's calyces, which also contain a sparse but uniform distribution of octopaminergic elements. Microsc. Res. Tech. 62:151-169, 2003.
منابع مشابه
Developmental organization of the mushroom bodies of Thermobia domestica (Zygentoma, Lepismatidae): insights into mushroom body evolution from a basal insect.
The mushroom bodies of the insect brain are sensory integration centers best studied for their role in learning and memory. Studies of mushroom body structure and development in neopteran insects have revealed conserved morphogenetic mechanisms. The sequential production of morphologically distinct intrinsic neuron (Kenyon cell) subpopulations by mushroom body neuroblasts and the integration of...
متن کاملOrganization of the honey bee mushroom body: representation of the calyx within the vertical and gamma lobes.
Studies of the mushroom bodies of Drosophila melanogaster have suggested that their gamma lobes specifically support short-term memory, whereas their vertical lobes are essential for long-term memory. Developmental studies have demonstrated that the Drosophila gamma lobe, like its equivalent in the cockroach Periplaneta americana, is supplied by a special class of intrinsic neuron-the clawed Ke...
متن کاملEvolution of insect mushroom bodies: old clues, new insights
The mushroom bodies are a morphologically diverse sensory integration and learning and memory center in the brains of various invertebrate species, of which those of insects are the best described. Insect mushroom bodies are composed of numerous tiny intrinsic neurons (Kenyon cells) that form calyces with their dendrites and a pedunculus and lobes with their axons. The identities of conserved K...
متن کاملFunctional feedback from mushroom bodies to antennal lobes in the Drosophila olfactory pathway.
Feedback plays important roles in sensory processing. Mushroom bodies are believed to be involved in olfactory learning/memory and multisensory integration in insects. Previous cobalt-labeling studies have suggested the existence of feedback from the mushroom bodies to the antennal lobes in the honey bee. In this study, the existence of functional feedback from Drosophila mushroom bodies to the...
متن کاملGround plan of the insect mushroom body: functional and evolutionary implications.
In most insects with olfactory glomeruli, each side of the brain possesses a mushroom body equipped with calyces supplied by olfactory projection neurons. Kenyon cells providing dendrites to the calyces supply a pedunculus and lobes divided into subdivisions supplying outputs to other brain areas. It is with reference to these components that most functional studies are interpreted. However, mu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Microscopy research and technique
دوره 62 2 شماره
صفحات -
تاریخ انتشار 2003